The generator matrix 1 0 1 1 1 X^2+X 1 1 0 1 1 X^2+X 1 1 0 1 1 X^2+X 1 1 X^2 1 X^2+X 1 1 1 X 1 1 0 1 1 1 1 1 1 1 1 1 1 1 X 1 0 1 X+1 X^2+X 1 1 0 X+1 1 X^2+X X^2+1 1 0 X+1 1 X^2+X X^2+1 1 X^2 X^2+X+1 1 X^2+X 1 X^2+1 X^2+1 X 1 0 X+1 1 0 X^2+X 0 X^2+X X^2 X X^2 X X^2 0 0 X^2+X 0 0 0 X^2 0 0 0 0 X^2 0 X^2 X^2 X^2 0 0 0 X^2 X^2 X^2 0 0 0 0 0 X^2 0 X^2 X^2 X^2 X^2 X^2 0 0 X^2 0 X^2 X^2 X^2 0 X^2 0 X^2 0 0 0 0 0 X^2 0 0 X^2 X^2 0 X^2 0 X^2 0 X^2 X^2 X^2 0 0 X^2 0 X^2 0 0 X^2 X^2 0 X^2 X^2 0 0 X^2 0 X^2 X^2 0 0 X^2 0 0 0 0 X^2 0 0 0 0 0 X^2 0 X^2 0 X^2 X^2 X^2 X^2 0 X^2 0 0 X^2 0 X^2 X^2 X^2 0 0 0 0 0 X^2 X^2 X^2 0 0 0 0 X^2 0 X^2 X^2 X^2 0 X^2 X^2 0 0 0 0 0 0 0 X^2 0 X^2 X^2 X^2 0 X^2 X^2 0 X^2 0 X^2 0 X^2 X^2 0 X^2 0 X^2 X^2 X^2 0 X^2 X^2 0 0 0 0 0 0 0 0 0 X^2 X^2 X^2 0 X^2 generates a code of length 43 over Z2[X]/(X^3) who´s minimum homogenous weight is 38. Homogenous weight enumerator: w(x)=1x^0+69x^38+32x^39+162x^40+64x^41+164x^42+64x^43+152x^44+64x^45+144x^46+32x^47+67x^48+4x^50+1x^54+2x^62+2x^64 The gray image is a linear code over GF(2) with n=172, k=10 and d=76. This code was found by Heurico 1.16 in 0.0587 seconds.